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Importance Sampling Review

Importance Sampling Basics

@ Sequence of events {A,} in (2, F,P) such that

lim —= log P(A,) = v > 0.
n n

@ Estimate P(A,) via IS by constructing sampling measure Q
and averaging independent replications of

P
Pn = 1a, dQ’
@ Performance of estimator determined by EQ[p?]..

o Call a change of measure/estimator asymptotically optimal if

1
lim inf —= log EQ[p?] > 2.
n n

=] =
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Tandem-Queue with Server Slowdown

Tandem-Queue with Server Slowdown

DA
4/21



Tandem-Queue with Server Slowdown

State Space Description

Arrival rate . Service rate of first server is 11 or pup. Service rate
of second server is pp. Q; the size of queue /. For each n € N
X" = Qj/n is the scaled process. Will focus on the case

A<vr < < p.

%28 2
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Tandem-Queue with Server Slowdown

Problem Statement

probability

@ Goal is to develop asymptotically optimal importance
sampling change of measure for estimating the buffer overflow

pn =P {Q> = n before Q = (0,0) starting from (1,0)} .
@ Difficulty of this problem arises from discontinuity due to
slowdown mechanism.

@ Simple model of a queueing network with interior
discontinuities.
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Tandem-Queue with Server Slowdown

Log Moment Generating Functions

© Below the slow-down threshold [region D]

H(a) = Xe™ — 1) + p1(e®™ — 1) + po(

@ —1).
© Above the slow-down threshold [region S]
Hs(a) =M™ — 1) + v1(e*?7 % — 1) + pp(e™ 2 = 1).
© On the boundary 04,
Ha, (a) = A(e™ — 1) + po(e™™ —1).
© On the boundary 05,
Ha, () = A(e”
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Tandem-Queue with Server Slowdown

Local Rate Function

@ X" satisfies a large deviations principle (LDP) with local rate
function L(x, 3).

® L(-,-) built out of the Legendre transform of the log-moment
generating functions from the previous slide: L, Lg, Ly, , Ly,
and their inf-convolutions.

@ L(x,-) convex for each x, and L(-,3) sectionally homogenous.

@ Important point is form of L on slowdown interface
x € {(x1,60) : x3 > 0} then

L(X,ﬁ) = [L@Ls](ﬁ)
= inf{pL(B1) + (1 — p)Ls(62) : pB1 + (1 — p)B2 = B}
= sgp[<a,5>—(HVHs)(a)]

n}
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Tandem-Queue with Server Slowdown

Exponential Decay Rate

@ For the escape probability we have v = —lim % log p, where

)
v = ot { [ 1. dyae: o0 =0.(o(T), =17 > 0}
= Olog(u2/N)+ (1 —0)logz

@ For any x € [0,00) x [0, 1] consider

:
~(x) = inf {/0 L(6,d) dt = $(0) = x, (H(T))y = 1. T > o}

n}
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Tandem-Queue with Server Slowdown

Overview of PDE/Game Theoretic Approach to IS

@ Fix scale parameter n and consider 2nd moment of a single
sample under an IS change of measure.

o Interpret — log[2nd moment] as a dynamic game. One player
the IS change of measure—other player large deviation player.

@ Consider the Isaacs equation obtained in the limit n — oo. If
a function W satisfies the subsolution property, then it
generates an IS change of measure, and a verification
argument can be used to bound —% log[2nd moment] from
below (here in terms of W/(0)).

@ The design problem: find W so W(0) is big (here near 2v)
and so that the associated change of measure is easy to
implement.

n}
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Tandem-Queue with Server Slowdown

IS Change of Measure from Subsolution

@ Suppose we are given a smooth subsolution W. Let
(p,q) = DW(x), and suppose we use new rates suggested by
the saddle point in the game:
@ for x such that x, < 0 i.e. region D, use

F(p,q) = (X, fi1, i), where X = Ne P/ iy = 11, eP=9/2 iy = p1,e9/?,
@ for x such that xo > 0 i.e. region S, use

F5*(p7 q) = (5‘7 l_/la ﬁ2)a where 5‘ = )‘eip/27 = Vle(piq)/27u2 = ’u/2eq/2.

scheme. Then

@ Theorem. Let W be a smooth subsolution and let V" equal
—% log[2nd moment] for a single sample under the associated

2y > limsup V" > liminf V" > W/(0).
n n
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Tandem-Queue with Server Slowdown

Subsolutions to Isaacs Equation

@ A classical subsolution to the Isaacs equation is a continuously
differentiable function W : Ry x [0,1] — R such that

Q H(x,DW(x)) > 0 for all x € (0,00) x (0,1),
Q (DW(x),d;) > 0 for all x € 9; where d; = —v; 1,

© W(x) <0 forall x € 0.
where,

Q H(x,a) = —2Hs(—a/2)if x2 >0
Q H(x,a) = —2H(—«/2) if xo < 6.

@ For smooth subsolution should also require
H A Hs(DW(x)) > 0 if x is on interface.
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Tandem-Queue with Server Slowdown

Construction of Subsolution

@ Construct collection of affine functions, these will make up the
gradient of subsolution.

©Q Define piecewise affine function as pointwise minimum of this
collection.

© Mollify piecewise affine function to get smooth function that
satisfies subsolution property of Isaacs equation.
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Tandem-Queue with Server Slowdown

Important Roots

@ Can be shown that H(x,2D~(x)) = 0 and of course v(0) = ~.

@ By studying optimal exit trajectory can get idea of D~ along
optimal trajectory.

@ From work of Miretskiy et. al. know form of optimal
trajectory to be
© (0,0) — (0,0) vertical path pushing against left boundary.
Q (0,0) — (0,1) vertical path gliding along left boundary.
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Tandem-Queue with Server Slowdown

Important Roots Cont'd

Q2

H,(a) =0 @2
o1 ag
aldl
\H-]I(a) >0 Hs(a) >0
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Tandem-Queue with Server Slowdown

Construction of a Subsolution

@ Fix an arbitrarily small § > 0 and define the affine functions

és(x) (x, a[O]> + 2log z,
M(x) = (x,all)+2y 34,
Mi(x) = (x,all) +2y—25,
W(x) = (x,all) +2y 35

o Define W5 = W A W0 A WS A VW,
@ Mollified version of W? is smooth subsolution that can be
used for IS.
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Tandem-Queue with Server Slowdown

A Piecewise Affine Subsolution

This figure depicts the gradients of W? in different regions of the
state space, with W9 = W/ in region G;.

=] =
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Serve the Longest Queue

Serve the Longest Queue
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Serve the Longest Queue

State space description

Weights ¢;, arrival rates \;, and service rates uj,i = 1,2. Let Q;

be the size of queue i, and X" = Q;/n the scaled process. Priority
to argmax{c; Q1, c2Q2}. In case of tie priority goes to Q.. Stability

condition o + 0 < 1.

1/c /

axy = X2

. ™
R ’

1/
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Serve the Longest Queue
Problem Statement

@ Construct asymptotically optimal importance sampling
estimators for the following

pn = P{X" = (X{, XJ) € 0 before X"

=0}
@ Though stated in 2 dimensions results hold in higher
dimensions.

o Difficulty due to discontinuity along line ¢c; Q1 = ¢ Q».
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Serve the Longest Queue

Large Deviations Rate Function

@ For i = 1,2 define

(7% = 1)+ > Aj(eW - 1),
and ' .
L(’)(ﬁ) = sup {(a,@ — H(’)(a)]
a€cRd
o For each x € R? define m(x) = {1 <i < 2: ¢ix; = max; ¢jx;},
then define local rate function as
LM (p),
L(x,pB) =

m(x) =1
LO(p) 7(x) = 2
L0 & L@)(3). 1
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Serve the Longest Queue

Isaacs Equation

@ Build IS change of measure out of gradients of continuously
differentiable functions W : R%r — R that satisfy

Q@ H(x, DW(x)) >0 forall x € D
Q W(x) <0 forall x €0.

o In the above H(x, o) = H;(a) = —2HU)(—a/2), where
J=max{i: i€ n(x)}.

@ Only exit boundary conditions needed, unlike server slowdown
model.

@ Again for smooth subsolution should also require
H;4 /\H2(DW(X)) >0if a1x1 = &xo.
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Serve the Longest Queue
Important Roots

;

Ho = H; AHy > 0

Hy >0
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Serve the Longest Queue

Construction of Smooth Subsolution

@ For positive § construct affine functions W, @/1, W, out of
roots ry, r1, r» such that pointwise minimum W satisfies
Q W(0) =2y -4,
Q@ W(x)<O0forxed.
© W(x) has the form

@ Use mollification technique to construct smooth subsolution,
Weo,



Serve the Longest Queue
Form of Subsolution

a1

(o]

x1
space.

This figure depicts the value of W in different regions of the state

=] =
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Serve the Longest Queue

Numerical Results

6 Dimension Example

n=20 n=250 n =80
Theoretical value 2.1x10°8 42 x 10713 37x10~%0
Estimate 2.21 x 1078 421 x 1013 3.75x 1072
Std. Err. 0.08 x 10~ 8 0.15 x 10~ 13 0.14 x 10~
95% C.1. [2.05,2.37] x 10~ 8 | [3.91,4.50] x 10~ 13 | [3.48,4.02] x 10~ %

Table 3. ()‘17 )\27 )\37 >‘47 >‘57 )\6) = (17 27 27 37 17 8)7 (N17N27 3, a4y N57N6) =
(10,15, 16, 16, 15,24), and (c1, ¢, ¢3, ¢, 05,66) = (1/2,1,1,1,1,1/3)

4 Dimension Example

n=20 n=50 n =280
Theoretical value 5.62 x 1079 1.54 x 10~ 14 7.01x 1023
Estimate 5.52 x 1079 1.51 x 10~ 6.91 x 1023
Std. Err. 0.27 x 1079 0.09 x 10~ 0.33x 10~
95% C.I. [4.99,6.04] x 107 | [1.33,1.69] x 10~ 1% | [6.26,7.56] x 10~ =

Table 2. (A1, A2, Az, Aa) = (1,2,2,4), (pa, p2, 3, p1a) =

(5,12,10,15), and (c1, &, 63, ) = (1/2,1,1,1)
SRR |



Serve the Longest Queue

Concluding Remarks

@ Important property of both systems: form of local rate
function along discontinuity i.e.

L(x,8) = L1 ® Lo(B) and L(x,3) = L& Ly(B).

@ |n order to construct smooth subsolution in domain should use

a gradient along interface that satisfies Isaacs equation on
both sides of interface e.g.,

H; A Hy(x) > 0 or H A Hg(DW(x)) > 0.

@ This condition agrees exactly with the above representation of
the local rate function along interface.

o (w1 =
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