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Importance Sampling Basics

Sequence of events {An} in (Ω,F , P) such that

lim
n

−
1

n
log P(An) = γ > 0.

Estimate P(An) via IS by constructing sampling measure Q

and averaging independent replications of

p̂n = 1An

dP

dQ
.

Performance of estimator determined by EQ[p̂2
n]..

Call a change of measure/estimator asymptotically optimal if

lim inf
n

−
1

n
log EQ[p̂2

n] ≥ 2γ.
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State Space Description

Arrival rate λ. Service rate of first server is ν1 or µ1. Service rate
of second server is µ2. Qi the size of queue i . For each n ∈ N

X n
i = Qi/n is the scaled process. Will focus on the case

λ < ν1 ≤ µ2 ≤ µ1.

$x_2$
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θ

∂1

∂2

x1
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λ

λ
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µ2

ν1
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Problem Statement

Goal is to develop asymptotically optimal importance
sampling change of measure for estimating the buffer overflow
probability

pn = P {Q2 = n before Q = (0, 0) starting from (1, 0)} .

Difficulty of this problem arises from discontinuity due to
slowdown mechanism.

Simple model of a queueing network with interior
discontinuities.
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Log Moment Generating Functions

1 Below the slow-down threshold [region D],

H(α)
.
= λ(eα1 − 1) + µ1(e

α2−α1 − 1) + µ2(e
−α2 − 1).

2 Above the slow-down threshold [region S ],

Hs(α)
.
= λ(eα1 − 1) + ν1(e

α2−α1 − 1) + µ2(e
−α2 − 1).

3 On the boundary ∂1,

H∂1
(α)

.
= λ(eα1 − 1) + µ2(e

−α2 − 1).

4 On the boundary ∂2,

H∂2
(α)

.
= λ(eα1 − 1) + µ1(e

α2−α1 − 1).
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Local Rate Function

X n satisfies a large deviations principle (LDP) with local rate
function L(x , β).

L(·, ·) built out of the Legendre transform of the log-moment
generating functions from the previous slide: L,Ls ,L∂1

,L∂2

and their inf-convolutions.

L(x , ·) convex for each x , and L(·, β) sectionally homogenous.

Important point is form of L on slowdown interface
x ∈ {(x1, θ) : x1 > 0} then

L(x , β) = [L ⊕ Ls ](β)

= inf {ρL(β1) + (1 − ρ)Ls(β2) : ρβ1 + (1 − ρ)β2 = β}

= sup
α

[〈α, β〉 − (H ∨ Hs) (α)]
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Exponential Decay Rate

For the escape probability we have γ
.
= − lim 1

n
log pn where

γ = inf

{
∫ T

0
L(φ, φ̇) dt : φ(0) = 0, (φ(T ))2 = 1,T ≥ 0

}

= θ log(µ2/λ) + (1 − θ) log z

For any x ∈ [0,∞) × [0, 1] consider

γ(x) = inf

{
∫ T

0
L(φ, φ̇) dt : φ(0) = x , (φ(T ))2 = 1,T ≥ 0

}
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Overview of PDE/Game Theoretic Approach to IS

Fix scale parameter n and consider 2nd moment of a single
sample under an IS change of measure.

Interpret − 1
n

log[2nd moment] as a dynamic game. One player
the IS change of measure–other player large deviation player.

Consider the Isaacs equation obtained in the limit n → ∞. If
a function W satisfies the subsolution property, then it
generates an IS change of measure, and a verification

argument can be used to bound − 1
n

log[2nd moment] from
below (here in terms of W (0)).

The design problem: find W so W (0) is big (here near 2γ)
and so that the associated change of measure is easy to
implement.
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IS Change of Measure from Subsolution

Suppose we are given a smooth subsolution W . Let
(p, q) = DW (x), and suppose we use new rates suggested by
the saddle point in the game:

1 for x such that x2 < θ i.e. region D, use

r̄∗(p, q) = (λ̄, µ̄1, µ̄2), where λ̄ = λe−p/2, µ̄1 = µ1e
(p−q)/2, µ̄2 = µ2e

q/2,

2 for x such that x2 ≥ θ i.e. region S, use

r̄∗s (p, q) = (λ̄, ν̄1, µ̄2), where λ̄ = λe−p/2, ν̄1 = ν1e
(p−q)/2, µ̄2 = µ2e

q/2.

Theorem. Let W be a smooth subsolution and let V n equal
− 1

n
log[2nd moment] for a single sample under the associated

scheme. Then

2γ ≥ lim sup
n

V n ≥ lim inf
n

V n ≥ W (0).
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Subsolutions to Isaacs Equation

A classical subsolution to the Isaacs equation is a continuously
differentiable function W̄ : R+ × [0, 1] → R such that

1 H(x , DW̄ (x)) ≥ 0 for all x ∈ (0,∞) × (0, 1),
2 〈DW̄ (x), di 〉 ≥ 0 for all x ∈ ∂i where di = −vi+1,
3 W̄ (x) ≤ 0 for all x ∈ ∂e .

where,
1 H(x , α) = −2Hs(−α/2) if x2 ≥ θ
2 H(x , α) = −2H(−α/2) if x2 < θ.

For smooth subsolution should also require
H ∧ Hs(DW̄ (x)) ≥ 0 if x is on interface.
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Construction of Subsolution

1 Construct collection of affine functions, these will make up the
gradient of subsolution.

2 Define piecewise affine function as pointwise minimum of this
collection.

3 Mollify piecewise affine function to get smooth function that
satisfies subsolution property of Isaacs equation.
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Important Roots

Can be shown that H(x , 2Dγ(x)) = 0 and of course γ(0) = γ.

By studying optimal exit trajectory can get idea of Dγ along
optimal trajectory.

From work of Miretskiy et. al. know form of optimal
trajectory to be

1 (0, 0) → (0, θ) vertical path pushing against left boundary.
2 (0, θ) → (0, 1) vertical path gliding along left boundary.
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Important Roots Cont’d
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Construction of a Subsolution

Fix an arbitrarily small δ > 0 and define the affine functions

W̄ δ
0 (x) = 〈x , α[0]〉 + 2 log z ,

W̄ δ
1 (x) = 〈x , α[1]〉 + 2γ − δ,

W̄ δ
2 (x) = 〈x , α[2]〉 + 2γ − 2δ,

W̄ δ
3 (x) = 〈x , α[3]〉 + 2γ − 3δ.

Define W̄ δ .
= W̄ δ

0 ∧ W̄ δ
1 ∧ W̄ δ

2 ∧ W̄ δ
3 .

Mollified version of W δ is smooth subsolution that can be
used for IS.
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A Piecewise Affine Subsolution
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This figure depicts the gradients of W̄ δ in different regions of the
state space, with W̄ δ = W̄ δ

i in region Gi .
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State space description

Weights ci , arrival rates λi , and service rates µi , i = 1, 2. Let Qi

be the size of queue i , and X n
i

.
= Qi/n the scaled process. Priority

to argmax{c1Q1, c2Q2}. In case of tie priority goes to Q2. Stability
condition λ1

µ1
+ λ2

µ2
< 1.

x1

x2

λ1
µ1

λ2

λ2

λ1

µ2

c1x1 = c2x2

1/c1

∂

∂

c̄1/c2

D

D
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Problem Statement

Construct asymptotically optimal importance sampling
estimators for the following

pn
.
= P {X n = (X n

1 ,X n
2 ) ∈ ∂ before X n = 0}

Though stated in 2 dimensions results hold in higher
dimensions.

Difficulty due to discontinuity along line c1Q1 = c2Q2.
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Large Deviations Rate Function

For i = 1, 2 define

H(i)(α)
.
= µi (e

−αi − 1) +
2

∑

j=1

λj(e
αj − 1),

and
L(i)(β) = sup

α∈Rd

[

〈α, β〉 − H(i)(α)
]

.

For each x ∈ R2
+ define π(x) = {1 ≤ i ≤ 2 : cixi = maxj cjxj},

then define local rate function as

L(x , β) =











L(1)(β), π(x) = 1

L(2)(β), π(x) = 2

L(1) ⊕ L(2)(β), π(x) = 1, 2
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Isaacs Equation

Build IS change of measure out of gradients of continuously
differentiable functions W : R2

+ → R that satisfy

1 H(x , DW̄ (x)) ≥ 0 for all x ∈ D
2 W̄ (x) ≤ 0 for all x ∈ ∂.

In the above H(x , α) = Hj(α)
.
= −2H(j)(−α/2), where

j = max{i : i ∈ π(x)}.

Only exit boundary conditions needed, unlike server slowdown
model.

Again for smooth subsolution should also require
H1 ∧ H2(DW̄ (x)) ≥ 0 if c1x1 = c2x2.
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Important Roots

H1 = 0

H1 ≥ 0

H2 = 0

H0 = H1 ∧ H2 ≥ 0

r1

r0

r2

H2 ≥ 0
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Construction of Smooth Subsolution

For positive δ construct affine functions W̄0, W̄1, W̄2 out of
roots r0, r1, r2 such that pointwise minimum W̄ satisfies

1 W̄ (0) = 2γ − δ,
2 W̄ (x) ≤ 0 for x ∈ ∂.
3 W̄ (x) has the form

W̄ =











W̄1(x), π(x) = 1

W̄2(x), π(x) = 2

W̄0(x), π(x) = {1, 2}

Use mollification technique to construct smooth subsolution,
W ε,δ.
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Form of Subsolution

1

x1

x2

c2

c1

2

W̄ = W̄1

W̄ ≤ 0

W̄ = W̄0
W̄ = W̄2

This figure depicts the value of W̄ in different regions of the state
space.
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Numerical Results

6 Dimension Example

n = 20 n = 50 n = 80

Theoretical value 2.1 × 10−8 4.2 × 10−13 3.7 × 10−20

Estimate 2.21 × 10−8 4.21 × 10−13 3.75 × 10−20

Std. Err. 0.08 × 10−8 0.15 × 10−13 0.14 × 10−20

95% C.I. [2.05, 2.37] × 10−8 [3.91, 4.50] × 10−13 [3.48, 4.02] × 10−20

Table 3. (λ1, λ2, λ3, λ4, λ5, λ6) = (1, 2, 2, 3, 1, 8), (µ1, µ2, µ3, µ4, µ5, µ6) =

(10, 15, 16, 16, 15, 24), and (c1, c2, c3, c4, c5, c6) = (1/2, 1, 1, 1, 1, 1/3)

4 Dimension Example

n = 20 n = 50 n = 80
Theoretical value 5.62 × 10−9 1.54 × 10−14 7.01 × 10−23

Estimate 5.52 × 10−9 1.51 × 10−14 6.91 × 10−23

Std. Err. 0.27 × 10−9 0.09 × 10−14 0.33 × 10−23

95% C.I. [4.99, 6.04] × 10−9 [1.33, 1.69] × 10−14 [6.26, 7.56] × 10−23

Table 2. (λ1, λ2, λ3, λ4) = (1, 2, 2, 4), (µ1, µ2, µ3, µ4) =

(5, 12, 10, 15), and (c1, c2, c3, c4) = (1/2, 1, 1, 1)
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Concluding Remarks

Important property of both systems: form of local rate
function along discontinuity i.e.

L(x , β) = L1 ⊕ L2(β) and L(x , β) = L ⊕ Ls(β).

In order to construct smooth subsolution in domain should use
a gradient along interface that satisfies Isaacs equation on
both sides of interface e.g.,

H1 ∧ H2(x) ≥ 0 or H ∧ Hs(DW̄ (x)) ≥ 0.

This condition agrees exactly with the above representation of
the local rate function along interface.
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